Postgenital Fusion and Epidermal Cell Fate Control during Gynoecium Development
نویسندگان
چکیده
منابع مشابه
Arabidopsis HECATE genes function in phytohormone control during gynoecium development
The fruit, which develops from the fertilised gynoecium formed in the innermost whorl of the flower, is the reproductive organ and one of the most complex structures of an angiosperm plant. Phytohormones play important roles during flower and fruit patterning, morphogenesis and growth, and there is emerging evidence for a cross-talk between different classes of plant hormones throughout these p...
متن کاملCell Fate Decisions During Breast Cancer Development
During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put...
متن کاملEpidermal cell fate and patterning in leaves.
Cell differentiation requires that undifferentiated cells first be selected before becoming committed to a specific fate. The selection of precursor cells often is coordinated so that mature differentiated cells are distributed in a characteristic pattern. One of the simplest possible patterns in tissues is that in which a minimum distance is maintained between differentiated cells in a two-dim...
متن کاملAsymmetric cell division during T cell development controls downstream fate
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β...
متن کاملCell fate determination during tooth development and regeneration.
Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest-derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cytologia
سال: 2021
ISSN: ['1348-7019', '0011-4545']
DOI: https://doi.org/10.1508/cytologia.86.1